The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For biological evaluation, H9c2 cell line was cultured for 10 days. Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1% ) and stimulation with 50 nM all trans-retinoic acid (CRA ), respectively. Immunohistochemistry showed elongated myotubes in C1% while round and multinucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9% ; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2750-2762, 2018.
Keywords: endothelin system; natriuretic peptides; scaffolds; single-walled carbon nanotubes; tissue engineering; trans-retinoic acid.
© 2017 Wiley Periodicals, Inc.