Objectives: Anti-epidermal growth factor receptor (EGFR) therapy has been found to be more effective against left-sided colorectal cancer (LCRC) than right-sided colorectal cancer (RCRC). We hypothesized that RCRC is more likely to harbor genetic alterations associated with resistance to anti-EGFR therapy and tested this using comprehensive genomic sequencing.
Materials and methods: A total of 201 patients with either primary RCRC or LCRC were analyzed. We investigated tumors for genetic alterations using a 415-gene panel, which included alterations associated with resistance to anti-EGFR therapy: TK receptors (ERBB2, MET, EGFR, FGFR1, and PDGFRA), RAS pathway (KRAS, NRAS, HRAS, BRAF, and MAPK2K1), and PI3K pathway (PTEN and PIK3CA). Patients whose tumors had no alterations in these 12 genes, theoretically considered to respond to anti-EGFR therapy, were defined as "all wild-type", while remaining patients were defined as "mutant-type".
Results: Fifty-six patients (28%) and 145 patients (72%) had RCRC and LCRC, respectively. Regarding genetic alterations associated with anti-EGFR therapy, only 6 of 56 patients (11%) with RCRC were "all wild-type" compared with 41 of 145 patients (28%) with LCRC (P = 0.009). Among the 49 patients who received anti-EGFR therapy, RCRC showed significantly worse progression-free survival (PFS) than LCRC (P = 0.022), and "mutant-type" RCRC showed significantly worse PFS compared with "all wild-type" LCRC (P = 0.004).
Conclusions: RCRC is more likely to harbor genetic alterations associated with resistance to anti-EGFR therapy compared with LCRC. Furthermore, our data shows primary tumor sidedness is a surrogate for the non-random distribution of genetic alterations in CRC.
Keywords: anti-EGFR therapy; colorectal cancer; comprehensive genomic sequencing; next-generation sequencing; right-sided.