Purpose: As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture healing.
Methods: A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic) groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2) as well as different numbers of ESWT applications (once, three times, or five times throughout the 35-day healing period) were applied to the osteoporotic fractures. Fracture healing was investigated quantitatively and qualitatively using micro-CT imaging, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, histomorphometric analysis and biomechanical analysis.
Results: The results of this study show a qualitative and quantitative improvement in the osteoporotic fracture healing under low-energy (energy flux intensity: 0,15 mJ/mm2) ESWT and with fewer treatment applications per healing period.
Conclusion: In conclusion, low-energy ESWT seems to exhibit a beneficial effect on the healing of osteoporotic fractures, leading to improved biomechanical properties, enhanced callus-quantity and -quality, and an increase in the expression of bone specific transcription factors. The results suggest that low-energy ESWT, as main treatment or as adjunctive treatment in addition to a surgical intervention, may prove to be an effective, simple to use, and cost-efficient option for the qualitative and quantitative improvement of osteoporotic fracture healing.