In the present study, we investigated whether global electroencephalography (EEG) synchronization can be a new promising index for tracking emotional arousal changes of a group of individuals during video watching. Global field synchronization (GFS), an index known to correlate with human cognitive processes, was evaluated; this index quantified the global temporal synchronization among multichannel EEG data recorded from a group of participants (n = 25) during the plays of two short video clips. The two video clips were each about 5 min long and were designed to evoke negative (fearful) or positive (happy) emotion, respectively. Another group of participants (n = 37) was asked to select the two most emotionally arousing (most touching or most fearful) scenes in each clip. The results of these questionnaire surveys were used as the ground-truth to evaluate whether the GFS could detect emotional highlights of both video clips. The emotional highlights estimated using the grand-averaged GFS waveforms of the first group were also compared with those evaluated from galvanic skin response, photoplethysmography, and multimedia content analysis, which are conventional methods used to estimate temporal changes in emotional arousal during video plays. From our results, we found that beta-band GFS values decreased during high emotional arousal, regardless of the type of emotional stimulus. Moreover, the emotional highlights estimated using the GFS waveforms coincided best with those found by the questionnaire surveys. These findings suggest that GFS might be applicable as a new index for tracking emotional arousal changes of a group of individuals during video watching, and is likely to be used to evaluate or edit movies, TV commercials, and other broadcast products.
Keywords: affective brain-computer interface (aBCI); electroencephalography (EEG); global field synchronization (GFS); neurocinematics; passive brain-computer interface.