The labels currently used on food and beverage products only provide consumers with a rough guide to their expected shelf lives because they assume that a product only experiences a limited range of predefined handling and storage conditions. These static labels do not take into consideration conditions that might shorten a product's shelf life (such as temperature abuse), which can lead to problems associated with food safety and waste. Advances in shelf-life estimation have the potential to improve the safety, reliability, and sustainability of the food supply. Selection of appropriate kinetic models and data-analysis techniques is essential to predict shelf life, to account for variability in environmental conditions, and to allow real-time monitoring. Novel analytical tools to determine safety and quality attributes in situ coupled with modern tracking technologies and appropriate predictive tools have the potential to provide accurate estimations of the remaining shelf life of a food product in real time. This review summarizes the necessary steps to attain a transition from open labeling to real-time shelf-life measurements.
Keywords: WSI; food waste; limiting quality attributes; mathematical modeling; real-time estimations; shelf life; web-system integration.