Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long-term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long-term effect of low-level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON-1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1-dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide-spraying period was independent on PON-1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1-dependent DNA repair activity through 8-oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide-exposure. A post-translational regulation of OGG1 by pesticide may be postulated. Taken together, long-term exposure to low-levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders.
Keywords: DNA damage response; OGG1; chronic pesticide exposure; mitochondria destabilization; paraxonase 1 activity.
© 2018 Wiley Periodicals, Inc.