Background: Congenital cardiac defects, whether isolated or as part of a larger syndrome, are the most common type of human birth defect occurring on average in about 1% of live births depending on the malformation. As there is an expanding understanding of the underlying molecular mechanisms by which a cardiac defect may occur, there is a need to assess the current rates of diagnosis of cardiac defects by molecular sequencing in a clinical setting.
Methods and results: In this report, we evaluated 34 neonatal and pediatric patients born with a cardiac defect and their parents using exomized preexisting whole genome sequencing (WGS) data to model clinically available exon-based tests. Overall, we identified candidate variants in previously reported cardiac-related genes in 35% (12/34) of the probands. These include clearly pathogenic variants in two of 34 patients (6%) and variants of uncertain significance in relevant genes in 10 patients (26%), of these latter 10, 2 segregated with clinically apparent findings in the family trios.
Conclusions: These findings suggest that with current knowledge of the proteins underlying CHD, genomic sequencing can identify the underlying genetic etiology in certain patients; however, this technology currently does not have a high enough yield to be of routine clinical use in the screening of pediatric congenital cardiac defects.
Keywords: congenital heart disease; genetic; whole genome sequencing.
© 2017 ITMI/Inova Health System. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.