Background: Global longitudinal strain (GLS), reflecting total shortening of the myocardium during the cardiac cycle, has emerged as a more precise myocardial function measure than left ventricular ejection fraction (LVEF). Longitudinal strain may be selectively affected in subclinical heart disease, even in the presence of normal LVEF. This study examines subclinical cardiac dysfunction, assessed by GLS and LVEF, and cognition among older adults.
Methods and results: Vanderbilt Memory and Aging Project participants who were free of clinical dementia, stroke, and heart failure (n=318, 73±7 years, 58% male) completed neuropsychological assessment and cardiac magnetic resonance to quantify GLS and LVEF. Linear regression models related GLS and LVEF to neuropsychological performances, adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile, cognitive diagnosis, and APOE*ε4 status. Models were repeated with a cardiac×cognitive diagnosis interaction term. Compromised GLS (reflected by higher values) related to worse naming (β=-0.07, P=0.04), visuospatial immediate recall (β=-0.83, P=0.03), visuospatial delayed recall (β=-0.22, P=0.03), and verbal delayed recall (β=-0.11, P=0.007). LVEF did not relate to worse performance on any measure (P>0.18). No diagnostic interactions were observed.
Conclusions: Our study results are among the first to suggest that compromised GLS relates to worse episodic memory and language performance among older adults who are free of clinical dementia, stroke, and heart failure. Subclinical cardiac dysfunction may correlate with cognitive health in late life, even when LVEF remains normal. The results add to growing evidence that GLS may be a more sensitive and preferred method for quantifying subclinical changes in cardiac function.
Keywords: brain; cardiac magnetic resonance imaging; cognition; global longitudinal strain; vascular risk factors.
© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.