18F-XTRA PET for Enhanced Imaging of the Extrathalamic α4β2 Nicotinic Acetylcholine Receptor

J Nucl Med. 2018 Oct;59(10):1603-1608. doi: 10.2967/jnumed.117.205492. Epub 2018 Mar 1.

Abstract

Reduced density of the α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) in the cortex and hippocampus of the human brain has been reported in aging and patients with neurodegenerative disease. This study assessed the pharmacokinetic behavior of 18F-(-)-JHU86428 (18F-XTRA), a new radiotracer for in vivo PET imaging of the α4β2-nAChR, particularly in extrathalamic regions of interest in which the α4β2-nAChR is less densely expressed than in thalamus. 18F-XTRA was also used to evaluate the α4β2-nAChR in the hippocampus in human aging. Methods: Seventeen healthy nonsmoker adults (11 men, 6 women; age, 30-82 y) underwent PET neuroimaging over 90 or 180 min in a high-resolution research tomograph after bolus injection of 18F-XTRA. Methods to quantify binding of 18F-XTRA to the α4β2-nAChR in the human brain were compared, and the relationship between age and binding in the hippocampus was tested. Results:18F-XTRA rapidly entered the brain, and time-activity curves peaked within 10 min after injection for extrathalamic regions and at approximately 70 min in the thalamus. The 2-tissue-compartment model (2TCM) predicted the regional time-activity curves better than the 1-tissue-compartment model, and total distribution volume (VT) was well identified by the 2TCM in all ROIs. VT values estimated using Logan analysis with metabolite-corrected arterial input were highly correlated with those from the 2TCM in all regions, and values from 90-min scan duration were on average within 5% of those values from 180 min of data. Parametric images of VT were consistent with the known distribution of the α4β2-nAChR across the brain. Finally, an inverse correlation between VT in the hippocampus and age was observed. Conclusion: Our results extend support for use of 18F-XTRA with 90 min of emission scanning in quantitative human neuroimaging of the extrathalamic α4β2-nAChR, including in studies of aging.

Keywords: 18F-XTRA; PET imaging; healthy aging; nicotinic acetylcholine receptor.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / metabolism
  • Aging / physiology
  • Brain / diagnostic imaging*
  • Brain / metabolism*
  • Brain / physiology
  • Cognition
  • Female
  • Hippocampus / diagnostic imaging
  • Hippocampus / metabolism
  • Humans
  • Male
  • Middle Aged
  • Positron-Emission Tomography*
  • Receptors, Nicotinic / metabolism*

Substances

  • Receptors, Nicotinic
  • nicotinic receptor alpha4beta2