Microsatellite instability in prostate cancer by PCR or next-generation sequencing

J Immunother Cancer. 2018 Apr 17;6(1):29. doi: 10.1186/s40425-018-0341-y.

Abstract

Background: Microsatellite instability (MSI) is now being used as a sole biomarker to guide immunotherapy treatment for men with advanced prostate cancer. Yet current molecular diagnostic tests for MSI have not been evaluated for use in prostate cancer.

Methods: We evaluated two next-generation sequencing (NGS) MSI-detection methods, MSIplus (18 markers) and MSI by Large Panel NGS (> 60 markers), and compared the performance of each NGS method to the most widely used 5-marker MSI-PCR detection system. All methods were evaluated by comparison to targeted whole gene sequencing of DNA mismatch-repair genes, and immunohistochemistry for mismatch repair genes, where available.

Results: In a set of 91 prostate tumors with known mismatch repair status (29-deficient and 62-intact mismatch-repair) MSIplus had a sensitivity of 96.6% (28/29) and a specificity of 100% (62/62), MSI by Large Panel NGS had a sensitivity of 93.1% (27/29) and a specificity of 98.4% (61/62), and MSI-PCR had a sensitivity of 72.4% (21/29) and a specificity of 100% (62/62).

Conclusions: We found that the widely used 5-marker MSI-PCR panel has inferior sensitivity when applied to prostate cancer and that NGS testing with an expanded panel of markers performs well. In addition, NGS methods offer advantages over MSI-PCR, including no requirement for matched non-tumor tissue and an automated analysis pipeline with quantitative interpretation of MSI-status.

Keywords: Capillary electrophoresis; MSI; Microsatellite instability; Mismatch repair; NGS; Next-generation sequencing; Promega; Prostate adenocarcinoma; mSINGS.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • High-Throughput Nucleotide Sequencing
  • Humans
  • Male
  • Microsatellite Instability*
  • Polymerase Chain Reaction
  • Prostatic Neoplasms / genetics*