Evaluation of coal-related model compounds using tandem mass spectrometry

Rapid Commun Mass Spectrom. 2018 Aug 30;32(16):1462-1472. doi: 10.1002/rcm.8163.

Abstract

Rationale: Gas chromatography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in the chemical industry. To further enhance the practical potential of GC/MS in chemical industry, a tandem MS method for the selection of ion pairs applied in monitoring coal conversions was established using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened.

Methods: Fourteen coal-related model compounds (CRMCs) were analyzed using GC/Q-TOF MS with different collision-induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process.

Results: The precursor ions of aromatic hydrocarbons without alkyl chains were difficult to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-opening reactions. Compared with the Calk Car bond, the Car Car bond was difficult to fragment due to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to the screening of ion pairs.

Conclusions: The CID technique of GC/Q-TOF MS will contribute to studies on the organic composition of coals and to building monitoring methods for coal conversions via fragmentation and ion pair selection.