In the present study, the function of miR-150 and its downstream target iASPP in the growth and metastasis of colorectal cancer (CRC) cells was investigated. The expression of miR-150 and iASPP was first investigated in clinical CRC samples. Subsequently, the effects of miR-150 overexpression and iASPP inhibition on cell viability, cell cycle distribution, apoptosis, migration and invasion were detected with CCK-8, flow cytometry, scratch and Transwell assays. The interaction between miR-150 and iASPP was confirmed using a dual-luciferase assay. Subsequently, the key role of iASPP in the anti-CRC function of miR-150 was assessed by inducing the expression of the gene in miR-150 overexpressed SW480 cells. In clinical samples, the level of miR-150 was downregulated, while iASPP was induced. Enforced expression of miR-150 decreased the viability, induced G1 cell cycle arrest and apoptosis, and inhibited the migration and invasion of SW480 cells. Knockdown of iASPP exerted a similar effect on SW480 cells to that of the overexpression of miR-150. Dual-luciferase assay demonstrated that miR-150 directly bound to iASPP and inhibited its transcription. The function of miR-150 depended on the inhibition of iASPP; induced expression of iASPP in miR-150-knockdown SW480 and HCT116 cells restored cell viability, migration and invasion while inhibiting G1 cell cycle arrest and apoptosis. Increased expression of miR-150 suppressed viability, proliferation, migration and invasion of SW480 cells. Furthermore, iASPP was a direct target of miR-150 and played a key role in its anti-CRC function. miR-150 may be a promising predictor of prognosis in CRC patients.