Objectives: This study sought to determine the extent of lateral esophageal displacement required during mechanical esophageal deviation (MED) and to eliminate luminal esophageal temperature elevation (LETElev) during pulmonary vein (PV) isolation.
Background: MED is a conceptually attractive strategy of minimizing esophageal injury while allowing uninterrupted energy delivery along the posterior left atrium during PV isolation.
Methods: MED was performed using a malleable metal stylet within a plastic tube placed within the esophagus. Barium was instilled to characterize the trailing esophageal edge. For each MED attempt, the MEDEffective, defined as the distance from the trailing esophageal edge-to-ablation line, was correlated to occurrences of LETElev.
Results: In 114 consecutive patients/221 PV pairs undergoing MED (age 62.1 ± 11 years, 75% men, 62%/38% paroxysmal/persistent AF), esophageal stretching invariably occurred such that the esophageal edge trailed behind the plastic tube. MEDEffective distances of 0 mm to 10 mm, 10 mm to 15 mm, 15 mm to 20 mm or >20 mm were achieved in 60 (27.1%), 64 (29%), 48 (21.7%), and 49 (22.2%) attempts, respectively. Overall, LET elevation >38°C occurred in 81 of 221 (36.7%) PV pairs. The incidence of LETElev among the 4 groups was 73.3%, 35.9%, 25%, and 4.1%, respectively. MEDEffective distances were 9.1 ± 6.5 mm and 18 ± 7.6 mm in patients with and without LETElev, respectively (p < 0.0001). Three patients (2.6%) experienced clinically significant MED-related trauma, albeit only with a stiffer stylet.
Conclusions: Mechanical esophageal deviation >20 mm from the PV ablation line prevents significant esophageal heating during PV isolation, but this level of displacement was difficult to safely achieve with this off-the-shelf mechanical stylet approach.
Keywords: esophageal deviation; esophageal protection; stylet.
Copyright © 2017. Published by Elsevier Inc.