Introduction: The need for biomarkers which can predict disease course and treatment response in rheumatoid arthritis (RA) is evident. We explored whether clinical and imaging responses to biologic disease modifying anti-rheumatic drug treatment (bDMARD) were associated with the individual's mediator production in explants obtained at baseline.
Methods: RA Patients were evaluated by disease activity score 28 joint C-reactive protein (DAS 28-)), colour Doppler ultrasound (CDUS) and 3 Tesla RA magnetic resonance imaging scores (RAMRIS). Explants were established from synovectomies from a needle arthroscopic procedure prior to initiation of bDMARD. Explants were incubated with the bDMARD in question, and the productions of interleukin-6 (IL-6), monocyte chemo-attractive protein-1 (MCP-1) and macrophage inflammatory protein-1-beta (MIP-1b) were measured by multiplex immunoassays. The changes in clinical and imaging variables following a minimum of 3 months bDMARD treatment were compared to the baseline explant results. Mixed models and Spearman's rank correlations were performed. P-values below 0.05 were considered statistically significant.
Results: 16 patients were included. IL-6 production in bDMARD-treated explants was significantly higher among clinical non-responders compared to responders (P = 0.04), and a lack of suppression of IL-6 by the bDMARDS correlated to a high DAS-28 (ρ = 0.57, P = 0.03), CDUS (ρ = 0.53, P = 0.04) and bone marrow oedema (ρ = 0.56, P = 0.03) at follow-up. No clinical association was found with explant MCP-1 production. MIP-1b could not be assessed due to a large number of samples below the detection limit.
Conclusions: Synovial explants appear to deliver a disease-relevant output testing which when carried out in advance of bDMARD treatment can potentially pave the road for a more patient tailored treatment approach with better treatment effects.