In an effort to find novel chemical series as antifibrinolytic agents, we explore α-phenylsulfonyl-α-spiropiperidines bearing different zinc-binding groups (ZBGs) to target those metalloproteinases involved in the fibrinolytic process: MMP3 and MMP10. Surprisingly, all these new chemical series were inactive against these metalloproteinases; however, several new molecules retained the antifibrinolytic activity in a phenotypic functional assay using thromboelastometry and human whole blood. Further optimization led to compound 38 as a potent antifibrinolytic agent in vivo, three times more efficacious than the current standard-of-care (tranexamic acid, TXA) at 300 times lower dose. Finally, in order to decipher the underlying mode-of-action leading to this phenotypic response, an affinity-based probe 39 was successfully designed to identify the target involved in this response: a potentially unknown mechanism-of-action in the fibrinolytic process.