We compared the glucose clearance ability of gibel carp CAS III (A strain) with gibel carp Dongting (DT strain). A previous study suggested that these two strains responded to insulin differently. As insulin plays an important role in glucose utilization, we hypothesized that the ability to eliminate excess glucose after a glucose load would differ between A strain and DT strain. To test this hypothesis, fasted specimens of both strains of gibel carp were injected with glucose. As expected, glucose induced hyperglycemia in both A strain and DT strain. In both strains, mRNA levels of the glycolytic enzyme 6-phosphofructokinase (6PFK) increased in the white skeletal muscle 8 h post-injection, while expression levels of glucose-6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) decreased in the liver 8 h post-injection. In the DT strain, both GLUT4 expression and muscular glycolytic processes increased, as reflected by elevated hexokinase 2 (HK2) and pyruvate kinase (PK) mRNA expression levels. The DT strain also returned to basal glycemia more quickly than the A strain (within 6 h versus more than 12 h). The glycogen concentration in the liver of the DT strain was higher than that of the A strain, indicating that the DT strain was better able to store glucose as glycogen than the A strain. Overall, the DT strain was better able to clear excess blood glucose after the glucose tolerance test than the A strain.
Keywords: A strain; DT strain; Genotype; Glucose injection; Liver; Muscle.
Copyright © 2018. Published by Elsevier Inc.