Rationale: IL-13 is an important cytokine implicated in the pathogenesis of allergic asthma and is an attractive target for an inhaled therapeutic.
Objective: To investigate the efficacy of CDP7766, a nebulized inhaled anti-IL-13 monoclonal antibody Fab fragment, in a model of allergic asthma in cynomolgus macaques naturally sensitized to Ascaris suum.
Methods: CDP7766 was nebulized using a vibrating-membrane nebulizer on the basis of eFlow technology. The aerosol generated was analyzed to determine the particle size profile and the biophysical and functional properties of CDP7766. Nebulized CDP7766 (0.1-60 mg/animal, once daily for 5 d) was delivered via the inhaled route.
Measurements and main results: The investigational eFlow nebulizer used in this study generated a respirable aerosol of CDP7766 with no evidence of degradation, loss of potency, aggregation, or formation of particulates. Inhaled CDP7766 was well tolerated in the model (no adverse effects related to local irritation) and significantly inhibited BAL allergen-induced cytokine and chemokine upregulation (60 mg vs. vehicle: eotaxin-3, P < 0.0008; MIP [macrophage inflammatory protein]-1β, IL-8, IFN-γ, P ≤ 0.01). CDP7766 significantly inhibited the increase in pulmonary resistance stimulated by inhaled allergen, measured 15 minutes and 24 hours after allergen challenge.
Conclusion: Inhaled CDP7766 potently inhibited the function of IL-13 generated during the airway response to inhaled allergen in cynomolgus macaques, demonstrating the potential of inhaled anti-IL-13 therapeutics for the treatment of allergic asthma.
Keywords: Ascaris suum; allergen; therapeutics.