Dyslipidemia, and specifically elevated low-density lipoprotein (LDL) cholesterol, is one of the most important cardiovascular risk factors. Statins are considered first line therapy for the primary and secondary prevention of cardiovascular disease. However, statins may not be adequate treatment for elevated circulating LDL levels and are ineffective in certain familial hypercholesterolemias. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulatory protein that affects LDL receptors, offers a new alternative for these patients. Moreover, gain-of-function PCSK9 mutations were discovered to be the root cause of familial autosomal dominant hypercholesterolemia. Inhibition of PSCK9 reduces plasma LDL levels, even in patients for whom statins are ineffective or not tolerated. Alirocumab and evolocumab, human monoclonal antibodies that inhibit PCSK9, have been approved to lower LDL levels. While there are drawbacks to these treatments, including adverse events, administration by subcutaneous injection, and high cost, these drugs are indicated for the treatment of atherosclerotic cardiovascular disease and familial hypercholesterolemia as adjunct to diet and maximally tolerated statin therapy. PCSK9 inhibitors may work synergistically with statins to lower LDL. Novel approaches to PCSK9 inhibition are currently in development with the aim of providing safe and effective treatment options to decrease cardiovascular event burden, ideally at lower cost and with oral bioavailability.
Keywords: PCSK9 inhibitor; atherosclerosis; cholesterol; hyperlipidemia; low-density lipoprotein.
© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.