Purpose: The etiology of 80% of patients with primary antibody deficiency (PAD), the second most common type of human immune system disorder after human immunodeficiency virus infection, is yet unknown.
Methods: Clinical/immunological phenotyping and exome sequencing of a cohort of 126 PAD patients (55.5% male, 95.2% childhood onset) born to predominantly consanguineous parents (82.5%) with unknown genetic defects were performed. The American College of Medical Genetics and Genomics criteria were used for validation of pathogenicity of the variants.
Results: This genetic approach and subsequent immunological investigations identified potential disease-causing variants in 86 patients (68.2%); however, 27 of these patients (31.4%) carried autosomal dominant (24.4%) and X-linked (7%) gene defects. This genetic approach led to the identification of new phenotypes in 19 known genes (38 patients) and the discovery of a new genetic defect (CD70 pathogenic variants in 2 patients). Medical implications of a definite genetic diagnosis were reported in ~50% of the patients.
Conclusion: Due to misclassification of the conventional approach for targeted sequencing, employing next-generation sequencing as a preliminary step of molecular diagnostic approach to patients with PAD is crucial for management and treatment of the patients and their family members.
Keywords: Dysgammaglobulinemia; Exome sequencing; Genetic diagnosis; Primary antibody deficiency.