Purpose: Intrauterine foetal surgery is the treatment option for several congenital malformations. For twin-to-twin transfusion syndrome (TTTS), interventions involve the use of laser fibre to ablate vessels in a shared placenta. The procedure presents a number of challenges for the surgeon, and computer-assisted technologies can potentially be a significant support. Vision-based sensing is the primary source of information from the intrauterine environment, and hence, vision approaches present an appealing approach for extracting higher level information from the surgical site.
Methods: In this paper, we propose a framework to detect one of the key steps during TTTS interventions-ablation. We adopt a deep learning approach, specifically the ResNet101 architecture, for classification of different surgical actions performed during laser ablation therapy.
Results: We perform a two-fold cross-validation using almost 50 k frames from five different TTTS ablation procedures. Our results show that deep learning methods are a promising approach for ablation detection.
Conclusion: To our knowledge, this is the first attempt at automating photocoagulation detection using video and our technique can be an important component of a larger assistive framework for enhanced foetal therapies. The current implementation does not include semantic segmentation or localisation of the ablation site, and this would be a natural extension in future work.
Keywords: Deep learning; Endoscopy; Twin-to-twin transfusion syndrome (TTTS); Workflow segmentation.