The study of an enzyme-linked immunosorbent assay (ELISA) and an amperometric biosensor for the detection of the pyrethroid deltamethrin in seawater is reported. The preparation of specific polyclonal antibodies is addressed using two immunizing haptens based on deltamethrin and cypermethrin compounds, with a spacer arm placed at the cyano residue in the pyrethroid structure. Different conjugates based on bovine serum albumin and aminodextran are prepared depending on the lipophilic profile of the competitor haptens studied. A reproducible and sensitive indirect competitive ELISA is developed, reaching a limit of detection of 1.2 ± 0.04 μg L-1 and an IC50 value of 21.4 ± 0.3 μg L-1 (both n = 3). For validation of the assays described, artificial seawater samples fortified with deltamethrin are analyzed. For the ELISA assay, these accuracy studies reported a slope of 0.904. An amperometric immunosensor is developed using the same immunoreagents and achieving a comparable detectability in terms of LOD of 4.7 μg L-1, measuring seawater without any pretreatment. These results suggest that both techniques can be used as rapid and simple analytical methods for deltamethrin quantification in seawater samples, which are great candidates for initial environmental screening programs. Graphical abstract ᅟ.
Keywords: Amperometric biosensor; Deltamethrin; Immunoassay; Seawater.