Aerobic training (AT) is a promising intervention to improve cognitive functioning. However, its modulatory effects on brain networks are not yet entirely understood. Sixty-five subjects with mild cognitive impairment performed a moderate intensity, 24-week AT program. Differences in resting regional brain glucose metabolism (rBGM) with FDG-PET were assessed before and after AT on a voxel-by-voxel basis. Structural equation modeling was used to create latent variables based on regions with significant rBGM changes and to test a hypothetical model about the inter-relationships between these changes. There were significant rBGM reductions in both anterior temporal lobes (ATL), left inferior frontal gyrus, left anterior cingulate cortex, right hippocampus, left meddle frontal gyrus and bilateral caudate nuclei. In contrast, there was an increase in rBGM in the right precuneus and left inferior frontal gyrus. Latent variables reflecting the salience network and ATL were created, while the precuneus represented the default mode network. In the model, salience network rBGM was decreased after AT. In contrast, rBGM in the default mode network increased as a final outcome. This result suggested improved salience network efficacy and increased control over other brain functional networks. The ATL network decreased its rBGM and connected to the salience network and default mode network with positive and negative correlations, respectively. The model fit values reached statistical significance, demonstrating that this model explained the variance in the measured data. In mild cognitive impairment subjects, AT modulated rBGM in salience network and default mode network nodes. Such changes were in the direction of the normally expected resting-state metabolic patterns of these networks.
Keywords: Aerobic training; Default mode network; FDG-PET; Mild cognitive impairment; Non-pharmacological interventions; Salience network; Structural equation modeling.