XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis

Cell Death Dis. 2018 Jul 24;9(8):806. doi: 10.1038/s41419-018-0867-4.

Abstract

X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a proapoptotic tumor suppressor that is frequently inactivated in multiple human cancers. However, the molecular basis for the XAF1-mediated growth inhibition remains largely undefined. Here, we report that XAF1 forms a positive feedback loop with interferon regulatory factor-1 (IRF-1) and functions as a transcriptional coactivator of IRF-1 to suppress tumorigenesis. Under various stressful conditions, XAF1 transcription is activated by IRF-1, and elevated XAF1 stabilizes and activates IRF-1. Mechanistically, XAF1 binds to the multifunctional domain 2 of IRF-1 via the zinc finger domain 6, thereby hindering C-terminus of Hsc70-interacting protein (CHIP) interaction with and ubiquitination of IRF-1. Activation of the IRF-1-XAF1 loop greatly increases stress-induced apoptosis and decreases the invasive capability of tumor cells. Oncogenic Ras and growth factors interfere with the IRF-1-XAF1 interplay via Erk-mediated repression of XAF1 transcription. Furthermore, XAF1 enhances IRF-1-mediated transcription of proapoptotic genes via the XAF1-IRF-1 complex formation on these target promoters. Meanwhile, XAF1 inhibits NF-κB-mediated tumor cell malignancy by reinforcing IRF-1 binding to a subset of coregulated promoters. Expression levels of IRF-1 and XAF1 correlate tightly in both cancer cell lines and primary tumors, and XAF1-induced tumor regression is markedly attenuated in IRF-1-depleted tumors. Collectively, this study identifies a novel mechanism of XAF1-mediated tumor suppression, uncovering XAF1 as a feedback coactivator of IRF-1 under stressful conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Animals
  • Apoptosis Regulatory Proteins
  • Apoptosis* / drug effects
  • Carcinogenesis
  • Cell Line, Tumor
  • Cytokines / pharmacology
  • Etoposide / pharmacology
  • Fluorouracil / pharmacology
  • Humans
  • Interferon Regulatory Factor-1 / antagonists & inhibitors
  • Interferon Regulatory Factor-1 / genetics
  • Interferon Regulatory Factor-1 / metabolism*
  • Intracellular Signaling Peptides and Proteins / antagonists & inhibitors
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Male
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism
  • Mice
  • Mice, Nude
  • NF-kappa B / metabolism
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Promoter Regions, Genetic
  • Protein Binding
  • RNA Interference
  • RNA, Small Interfering / metabolism
  • Ubiquitination

Substances

  • Adaptor Proteins, Signal Transducing
  • Apoptosis Regulatory Proteins
  • Cytokines
  • IRF1 protein, human
  • Interferon Regulatory Factor-1
  • Intracellular Signaling Peptides and Proteins
  • NF-kappa B
  • Neoplasm Proteins
  • RNA, Small Interfering
  • XAF1 protein, human
  • Etoposide
  • Matrix Metalloproteinase 9
  • Fluorouracil