Background: In vivo animal assays are a cornerstone of preclinical pain research. An optimal stimulus for determining the activity of potential analgesics would produce responses of a consistent magnitude on repeated testing. Intraplantar (i.pl.) injection of hypertonic saline (HS) in mice produces robust nociceptive responses to different analgesics, without evidence of tissue damage. Here, we investigated whether the nociceptive response is changed by repeating the injection at different times and sites in a mouse and whether it is attenuated by morphine.
Methods: We conducted randomized and blinded experiments to assess responses to repeated i.pl. 10% HS in female CD-1 mice. An injection of HS was followed by a second injection into the same hind paw at 4 hours, 24 hours, or 7 days. A separate group of mice each received i.pl. injections at 5, 10, and 15 days. In 2 independent experiments, 30 minutes after initial HS injections in the ipsilateral hind paw, mice received HS injection into the contralateral hind paw or ipsilateral forepaw. The ability of morphine to block the nociceptive responses was examined by injecting morphine at 5-day intervals.
Results: Repeated injection of HS did not alter the responses at 4 hours (84 vs 75 seconds; mean difference [95% CI], -9 [-40 to 23]; P = .6), 24 hours (122 vs 113 seconds; -6 [-24 to 12]; P = .5), or 7 days (112 vs 113 seconds; -0.3 [-12 to 11]; P = .95) or at multiple injections (day 0, 122 seconds vs day 5, 121 seconds; -0.3 [-28 to 27], P > .99; day 10, 118 seconds; 2.5 [-36 to 41], P = .99; day 15, 119 seconds; 2 [-36 to 38], P = .99). A previous hind paw injection did not change the responses of the contralateral hind paw (right, 93 seconds versus left, 96 seconds; -3 [-20 to 13], P = .7) or of the ipsilateral forepaw (forepaw after HS, 146 seconds versus forepaw after 0.9% saline, 149 seconds; -3 [-28 to 22], P = .8). Morphine dose-dependently attenuated HS responses (control, 94 seconds vs 4 mg/kg, 66 seconds; 29 [-7 to 64], P = .12; vs 10 mg/kg, 27 seconds; 67 [44-90], P < .0001; 4 vs 10 mg/kg, 67 [44-90], P = .03).
Conclusions: The repetition of i.pl. HS produces consistent reproducible responses without tissue damage. This results in efficient, rapid detection of analgesic activity, reducing the number of animals required.