Purpose: While ultrasmall superparamagnetic iron oxide (USPIO) is useful for identifying atherosclerotic lesions as an MRI contrast medium, there are limitations in its power to quantitatively evaluate and resolve USPIO in atherosclerotic lesions of the heart. Computed tomography (CT) has a higher resolution than MRI, and Dual Energy CT is capable of visualizing iron atoms, the main component of USPIO. More recently, a new USPIO capable of achieving longer retention times in blood circulation compared to the previous USPIO has been developed. The objective of this study was to investigate the feasibility of visualizing and quantifying the new USPIO by dual energy CT.
Materials and methods: USPIO with iron concentrations adjusted in 5 steps from 2.5 to 50 mg/mL was visualized by dual energy CT to measure the contrast on virtual monochromatic imaging (40 and 70 keV). In parallel experiments, iodine contrast medium was diluted to the same concentrations and visualized by dual energy CT to measure the contrast at 70 keV. The linearity of the contrast against the iron and iodine concentrations was measured for the quantitative evaluation. Further, a vascular phantom simulating clinical cases (divided into 4 layers: meat alone, meat + USPIO, vascular lumen, and with or without calcification) was prepared. The iron density image was overlaid on the image at 70 keV to evaluate the visualization of the USPIO medium.
Results: In the imaging of the medium with an iron concentration of 25 mg/mL, the CT numberat 70 keV was 117.0 HU, or about 17% of that of iodine (664.4 HU). The CT number rose to 319.9 HU at 40 keV, or to about 48% of that of iodine. The linearity of the contrast against the iron concentration in USPIO was R2 = 0.9996, indicating a strong correlation. In the simulated vascular phantom, the iron concentration significantly increased in the region containing USPIO, and the quantity could be visualized by overlaying the iron density image displayed with a color scale on the 70-keV image.
Conclusion: Our results suggested that macrophages could be both quantified and visualized by USPIO on dual energy CT.
Keywords: CCTA, coronary computed tomographic angiography; CMEADM, carboxymethyl-diethylaminoethyl dextran magnetite ultrasmall superparamagnetic iron oxide; DECT, dual energy computed tomography; MDI, material density image; USPIO, ultrasmall superparamagnetic iron oxide; VMI, virtual monochromatic image; dual energy CT; macrophage; plaque imaging; ultrasmall superparamagnetic iron oxide.