Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

Neuroimage. 2018 Dec:183:150-172. doi: 10.1016/j.neuroimage.2018.08.003. Epub 2018 Aug 9.

Abstract

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.

Keywords: Attention deficit hyperactivity disorder; Autism; Cerebellar ataxia; Magnetic resonance imaging.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Attention Deficit Disorder with Hyperactivity / diagnostic imaging*
  • Autism Spectrum Disorder / diagnostic imaging*
  • Cerebellar Ataxia / diagnostic imaging*
  • Cerebellum / diagnostic imaging*
  • Child
  • Cohort Studies
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Image Processing, Computer-Assisted / standards
  • Machine Learning*
  • Magnetic Resonance Imaging / methods*
  • Magnetic Resonance Imaging / standards
  • Male
  • Neuroimaging / methods*
  • Neuroimaging / standards