The present study evaluated the neuroprotective effects of one selenium-containing AZT derivative compound (S1073) in memory and learning impairment caused by Intracerebroventricular-streptozotocin (ICV-STZ). ICV-STZ in mice causes impairment of energy metabolism with oxidative damage and cholinergic dysfunction, and provides a relevant model for sporadic dementia of Alzheimer's type (AD). Acetylcolinesterase (AChE), Catalase (CAT), dichlorofluorescein oxidation (DCFH), TBARS and thiol content were measured. Swiss adult mice were pre-treated with S1073 [1 mmol/kg] (i.p.) and after 30 min of the injection received a bilateral dose of STZ [11.3 μmol/l]. After 8 days' STZ injection, we performed the behavioral experiments (Beaker test, Open field and Morris water maze task). ICV-STZ caused significant learning and memory impairments, which were significantly improved by S1073 pre-treatment. A significant increase in cerebral DFCH, TBARS levels and AChE activity and a disturbance in the memory and learning were observed in ICV-STZ injected animals. S1073 significantly ameliorated all alterations induced by ICV-STZ in mice. All these findings support the neuroprotective role of S1073 in mice model of Alzheimer's dementia-type induced by ICV-STZ, which may be associated with its antioxidant activity and/or with its inhibitory effect in brain AChE. In fact, in silico analysis indicated that S1073 may be an inhibitor of AChE.
Keywords: Alzheimer; Behavioral; Learning; Memory; Oxidative stress; Streptozotocin.
Copyright © 2018 Elsevier B.V. All rights reserved.