Cell wall recalcitrance is the major challenge to improving saccharification efficiency in converting lignocellulose into biofuels. However, information regarding the transcriptional regulation of secondary cell wall biogenesis remains poor in switchgrass (Panicum virgatum), which has been selected as a biofuel crop in the United States. In this study, we present a combination of computational and experimental approaches to develop gene regulatory networks for lignin formation in switchgrass. To screen transcription factors (TFs) involved in lignin biosynthesis, we developed a modified method to perform co-expression network analysis using 14 lignin biosynthesis genes as bait (target) genes. The switchgrass lignin co-expression network was further extended by adding 14 TFs identified in this study, and seven TFs identified in previous studies, as bait genes. Six TFs (PvMYB58/63, PvMYB42/85, PvMYB4, PvWRKY12, PvSND2 and PvSWN2) were targeted to generate overexpressing and/or down-regulated transgenic switchgrass lines. The alteration of lignin content, cell wall composition and/or plant growth in the transgenic plants supported the role of the TFs in controlling secondary wall formation. RNA-seq analysis of four of the transgenic switchgrass lines revealed downstream target genes of the secondary wall-related TFs and crosstalk with other biological pathways. In vitro transactivation assays further confirmed the regulation of specific lignin pathway genes by four of the TFs. Our meta-analysis provides a hierarchical network of TFs and their potential target genes for future manipulation of secondary cell wall formation for lignin modification in switchgrass.
Keywords: Bi-clustering algorithm; bioenergy crop; co-expression analysis; secondary cell wall biosynthesis; transcription factors; transgenic switchgrass.
© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.