Background: Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17β-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats.
Methods: Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17β-estradiol (280 μg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7). Experiments were performed 180 minutes thereafter. Histopathological changes in the lung were evaluated by histomorphometry. Gene expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and endothelin-1 was measured by real-time polymerase chain reaction. Protein expression of NO synthases, endothelin-1, platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), BCL-2, and caspase 3 was assessed by immunohistochemistry. Cytokines were quantified by enzyme-linked immunosorbent assay.
Results: Treatment with 17β-estradiol after brain death decreased lung edema and hemorrhage (p < 0.0001), and serum levels of cytokine-induced neutrophil chemoattractant-1 (CINC-1; p = 0.0020). iNOS (p < 0.0001) and VCAM-1 (p < 0.0001) also diminished at protein levels, while eNOS accumulated (p = 0.0002). However, gene expression of iNOS, eNOS, and endothelin-1 was comparable among groups, as was protein expression of endothelin-1, ICAM-1, BCL-2, and caspase 3.
Conclusions: 17β-Estradiol effectively reduces lung injury in brain-dead rats mainly due to its ability to regulate NO synthases. Thus, the drug may improve lung viability for transplantation.
Keywords: brain death; estradiol; inflammation; lung; male Wistar rats; microcirculation.
Copyright © 2018 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.