Purpose: Dosimetry for melanoma-targeted radionuclide therapy (TRT) with [131 I]ICF01012, a melanin ligand, has been previously evaluated in mice bearing melanomas. In this study, activity distribution and dosimetry are performed on healthy rabbits (Fauve de Bourgogne) using SPECT-CT imaging and ex vivo measurements.
Material and methods: Ex vivo biodistribution (i.v. injection: 370 kBq/kg, n = 2 per point) is performed on blood, eyes, brain, lung, liver, kidneys, heart, stomach, and spleen. Dosimetry calculations follow the MIRD formalism: S values are calculated from CT images using the GATE Monte Carlo platform and activity distributions are obtained from SPECT-CT imaging (i.v. injection: 37 MBq/kg n = 3 per point). A specific study is presented to assess dose to human retina.
Results: Time-integrated activities based on SPECT-CT are in accordance with ex vivo measurements except for spleen. Doses to liver and eyes are the most significant, with respectively, 6.38 ± 0.50 Gy/GBq (evaluated through SPECT-CT imaging) and 45.8 ± 7.9 Gy/GBq (evaluated through ex vivo measurements). Characterization of ocular [131 I]ICF01012 biodistribution in rabbits and quantification of melanin allowed to assess a dose of 3.07 ± 0.70 Gy/GBq to human retina.
Conclusion: This study sustains [131 I]ICF01012 as a good candidate for melanoma TRT and open perspectives for personalized dosimetry calculation during phase I clinical transfer.
Keywords: GATE; dosimetry; imaging; pigmented melanoma; targeted radionuclide therapy.
© 2018 American Association of Physicists in Medicine.