Identification of specific cells and subcellular structures in the retina is fundamental for understanding the visual process, retinal development, disease progression, and therapeutic intervention. The increased use of knockout, transgenic, and naturally occurring mutant mice has further underlined the need for retinal cell-specific imaging. Immunofluorescence microscopy of retinal cryosections and whole-mount tissue labeled with cell-specific markers has emerged as the method of choice for identifying and quantifying specific cell populations and mapping their distribution within the retina. Immunofluorescence microscopy has also been important in localizing proteins to specific compartments of retinal cells. In most cases indirect labeling methods are employed in which lightly fixed retinal samples are first labeled with a primary antibody targeted against a cell-specific protein of interest and then labeled with a fluorescent dye-tagged secondary antibody that recognizes the primary antibody. The localization and relative abundance of the protein can be readily imaged under a conventional fluorescent or confocal scanning microscope. Immunofluorescence labeling can be adapted for imaging more than one antigen through the use of multiple antibodies and different, non-overlapping fluorescent dyes. A number of well-characterized immunochemical markers are now available for detecting photoreceptors, bipolar cells, amacrine cells, horizontal cells, Müller cells, and retinal pigment epithelial cells in the retina of mice and other mammals. Immunochemical markers are also available for visualizing the distribution of specific proteins within cells with most studies directed toward photoreceptor cells.
Keywords: Antibodies; Cryosections; Fixation; Fluorescence microscopy; Immunofluorescence labeling; Mouse retina; Retinal cell-specific markers; Retinal whole mount.