Background: Virtual screening is vital for contemporary drug discovery but striking performance fluctuations are commonly encountered, thus hampering error-free use. Results and Methodology: A conceptual framework is suggested for combining screening algorithms characterized by orthogonality (docking-scoring calculations, 3D shape similarity, 2D fingerprint similarity) into a simple, efficient and expansible python-based consensus ranking scheme. An original experimental dataset is created for comparing individual screening methods versus the novel approach. Its utilization leads to identification and phosphoproteomic evaluation of a cell-active DYRK1α inhibitor.
Conclusion: Consensus ranking considerably stabilizes screening performance at reasonable computational cost, whereas individual screens are heavily dependent on calculation settings. Results indicate that the novel approach, currently available as a free online tool, is highly suitable for prospective screening by nonexperts.
Keywords: CREB1; NCI diversity set-II; NSC379099; analysis of residuals; docking-scoring calculations; fingerprint similarity; p53; phosphoproteomics; screening enrichment; shape-based similarity.