This paper demonstrates that highly reflective Cr/B₄C multilayer interference coatings with nanometric layer thicknesses, designed to operate in the soft X-ray photon energy range, have stable reflective performance for a period of 3 years after deposition. The microstructure and chemical composition of layers and interfaces within Cr/B₄C multilayers is also examined, with emphasis on the B₄C-on-Cr interface where a significant diffusion layer is formed and on the oxide in the top B₄C layer. Multiple characterization techniques (X-ray reflectivity at different photon energies, X-ray photoelectron spectroscopy, transmission electron microscopy, electron diffraction and X-ray diffraction) are employed and the results reveal a consistent picture of the Cr/B₄C layer structure.