Two systems are presented for segmentation of vertebrae in a 3D computed tomography (CT) image. The first method extracts seven features from each voxel and uses a multi-layer perceptron neural network (MLPNN) to classify the voxel as vertebrae or background. In the second method, the segmentation is completed in two steps: first, a newly developed adaptive pulse coupled neural network (APCNN) directly applied to a given image segments vertebrae, then the result is refined using a median filter. In the developed APCNN, the values for the user-defined parameters of the pulse coupled neural networks (PCNN) are adaptively adjusted for each image individually, instead of using one value for all images as in conventional PCNN. The performance of both systems in terms of Dice index (DI) was evaluated and compared against the state-of-the-art segmentation methods using seventeen clinical and standard CT images. Overall, both systems demonstrated statistically similar and promising performance with average DI > 95%. Compared to existing PCNN-based segmentation algorithms, the accuracy of the proposed APCNN improved by 29.3% on average. The developed APCNN-based system is more accurate than MLPNN-based system and existing PCNN-based algorithms in segmentation of vertebrae with blurred and weak boundaries and in the images contaminated by salt- and- pepper noise. In terms of computation time, the APCNN-based system is 16 times faster than the MLPNN-based system. Consequently, the presented APCNN-based algorithm is both accurate and fast and could be used in clinical environment for segmentation of vertebrae in 3D CT images.
Keywords: Feature extraction; Multi-layer perceptron; Pulse-coupled neural networks; Vertebrae segmentation.