Magnetic resonance (MR) simulators have recently gained popularity; it avoids the unnecessary radiation exposure associated with Computed Tomography (CT) when used for radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on joint dictionary learning. Patient-specific anatomical features were extracted from the aligned training images and adopted as signatures for each voxel. The most relevant and informative features were identified to train the joint dictionary learning-based model. The well-trained dictionary was used to predict the pseudo CT of a new patient. This prediction technique was validated with a clinical study of 12 patients with MR and CT images of the brain. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross correlation (NCC) indexes were used to quantify the prediction accuracy. We compared our proposed method with a state-of-the-art dictionary learning method. Overall our proposed method significantly improves the prediction accuracy over the state-of-the-art dictionary learning method. We have investigated a novel joint dictionary Iearning- based approach to predict CT images from routine MRIs and demonstrated its reliability. This CT prediction technique could be a useful tool for MRI-based radiation treatment planning or attenuation correction for quantifying PET images for PET/MR imaging.