This study investigated the roles of β-lactamase and penicillin-binding protein 3 (PBP3) alterations in the development of recent antimicrobial resistance in nontypeable Haemophilus influenzae (NTHi) isolated from Korean children. Nasopharyngeal NTHi isolates from children at a tertiary children's hospital were tested for antimicrobial susceptibility using E-test. β-lactamase production was screened by the paper disc test, and polymerase chain reaction amplification of blaTEM and blaROB-1 was performed. The ftsI gene was amplified to identify PBP3 alteration. Of the 53 NTHi isolates, 69.8% were ampicillin nonsusceptible. The nonsusceptibility rates for cefaclor were 81.1%, cefpodoxime 69.8%, and amoxicillin/clavulanate 32.1%. About 60.3% and 32.1% of the isolates were genetically β-lactamase-nonproducing ampicillin-resistant (gBLNAR) and genetically β-lactamase-producing amoxicillin/clavulanate-resistant (gBLPACR) strains, respectively. Group III amino acid substitutions comprised 65.6% of the gBLNAR strains and 70.6% of the gBLPACR strains. MIC50 for amoxicillin/clavulanate, cefaclor, cefuroxime, cefpodoxime, and cefixime were more than 2-80 times higher in the gBLNAR and gBLPACR strains compared with gBLPAR strains. Group III gBLNAR strains had significantly higher ampicillin, amoxicillin/clavulanate, cefpodoxime, and cefixime minimum inhibitory concentrations than group II strains. Group III gBLNAR and gBLPACR NTHi strains are highly prevalent in Korea, raising the alarm about increasing β-lactam resistance in NTHi.
Keywords: antibiotic resistance; beta-lactamase; penicillin-binding protein.