Size-growth asymmetry is not consistently related to productivity across an eastern US temperate forest network

Oecologia. 2019 Feb;189(2):515-528. doi: 10.1007/s00442-018-4318-9. Epub 2018 Dec 4.

Abstract

Modeling and forecasting forests as carbon sinks require that we understand the primary factors affecting productivity. One factor thought to be positively related to stand productivity is the degree of asymmetry, or the slope of the relationship between tree size and biomass growth. Steeper slopes indicate disproportionate productivity of big trees relative to small trees. Theoretically, big trees outcompete smaller trees during favorable growth conditions because they maintain better access to light. For this reason, high productivity forests are expected to have asymmetric growth. However, empirical studies do not consistently support this expectation, and those that do are limited in spatial or temporal scope. Here, we analyze size-growth relationships from 1970 to 2011 across a diverse network of forest sites in the eastern United States (n = 16) to test whether asymmetry is consistently related to productivity. To investigate this relationship, we analyze asymmetry-productivity relationships between our 16 forests at non-overlapping annual, 2-, 5-, 10-, and 20-year sampling intervals and find that asymmetry is negatively related to productivity, but the strength depends on the specific interval considered. Within-site temporal variability in asymmetry and productivity are generally positively correlated over time, except at the 5-year remeasurement interval. Rather than confirming or failing to support a positive relationship between asymmetry and productivity, our findings suggest caution interpreting these metrics since the relationship varies across forest types and temporal scales.

Keywords: Asymmetry; Basal area growth; Dendroecology; Productivity; Temperate forests.

MeSH terms

  • Biomass
  • Forests*
  • Trees*