Background: Trauma-induced coagulopathy occurs in about 25% of injured patients and accounts for about 10% of deaths worldwide. Upon injury, hemostatic function may decline due to vascular dysfunction, clotting factor deficiencies, hyperfibrinolysis, and/or platelet dysfunction. We investigated agonist-induced calcium signaling in platelets obtained over time from trauma patients.
Methods: Platelets from trauma patients and healthy donors were monitored via intracellular calcium mobilization and flow cytometry markers (α2bβ3 activation, P-selectin display, and phosphatidylserine exposure) following stimulation with a panel of agonists (adenosine 5'-diphosphate sodium salt, U46619, convulxin, PAR-1/4 activating peptides, iloprost) used in isolation or in pairwise tests. Furthermore, healthy donor platelets were tested in heterologous plasma isolated from healthy subjects and trauma patients.
Results: When exposed to agonists over the first 24 hours postinjury, trauma patient platelets mobilized less calcium in comparison to healthy platelets. Partial recovery of platelet activity was observed in about a third of patients after 120 hours, although not fully obtaining healthy baseline function. Flow cytometry markers of trauma platelets were similar to healthy platelets prior to stimulation, but were depressed in trauma platelets stimulated with adenosine 5'-diphosphate sodium salt or convulxin. Also, washed healthy platelets showed a significant reduction in calcium mobilization when reconstituted in plasma from trauma patients, relative to healthy plasma, at all plasma doses tested.
Conclusion: Platelet dysfunction in trauma patients included poor response to multiple agonists relevant to hemostatic function. Furthermore, the inhibitor effect of patient plasma on healthy platelets suggests that soluble plasma species may downregulate endogenous or transfused platelets during trauma.