Potent Antagonists of RORγt, Cardenolides from Calotropis gigantea, Exhibit Discrepant Effects on the Differentiation of T Lymphocyte Subsets

Mol Pharm. 2019 Feb 4;16(2):798-807. doi: 10.1021/acs.molpharmaceut.8b01063. Epub 2019 Jan 22.

Abstract

RORγt is the master transcription factor of IL-17 cytokine expression and Th17 lymphocyte differentiation, which are responsible for the induction of many autoimmune diseases. Recently, RORγt has become an attractive target for drug development to treat these types of diseases, and the field of RORγt antagonist research is now extremely competitive. In our current study, molecular docking was applied to demonstrate that cardenolides, including uscharin, calactin, and calotropin derived from Calotropis gigantea, probably directly bind to RORγt. Therefore, the inhibitory effect was further validated using a luciferase reporter assay. Because RORγt is the key transcriptional factor for Th17 differentiation, the effects of these compounds on Th17 differentiation were studied by flow cytometry. The results showed that uscharin, calactin, and calotropin inhibited Th17 differentiation from 100 to 500 nM. Furthermore, uscharin had a better effect than digoxin, a well-known inverse agonist of RORγt, in reducing Th17 polarization. Additionally, the effects of the cardenolides on the differentiation of other Th lineages, including Th1, Th2, and Treg, were investigated. Uscharin suppressed Th1, Th2, and Treg cell differentiation, while calactin suppressed the differentiation of Th1 cells, and calotropin did not influence the other T cell subsets, indicating that calactin suppressed Th1 and Th17 differentiation, and calotropin selectively quenched Th17 polarization. Structural analysis of the three compounds showed that the selectivity of uscharin, calactin, and calotropin on the suppression of the different subsets of T cells is correlated to the minor differences in their chemical structures. Collectively, calactin and calotropin have greater potential to be developed as lead compounds than uscharin to treat autoimmune diseases mediated by Th17 and/or Th1 cells.

Keywords: RORγt; T cell subsets; calactin; calotropin; uscharin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Calotropis / chemistry*
  • Cardenolides / pharmacology*
  • Cell Differentiation / drug effects*
  • Flow Cytometry
  • HEK293 Cells
  • Humans
  • Interleukin-17 / metabolism
  • Mice, Inbred C57BL
  • Molecular Docking Simulation
  • Receptors, Retinoic Acid / antagonists & inhibitors*
  • T-Lymphocyte Subsets / cytology*
  • T-Lymphocyte Subsets / drug effects*
  • Th1 Cells / cytology
  • Th1 Cells / drug effects
  • Th17 Cells / cytology
  • Th17 Cells / drug effects

Substances

  • Cardenolides
  • Interleukin-17
  • Receptors, Retinoic Acid
  • calotropin