DDR1 has been linked to schizophrenia (SZ) and myelination. Here, we tested whether DDR1 variants in people at risk for SZ influence white matter (WM) structural variations and cognitive processing speed (PS). First, following a case-control design (Study 1), SZ patients (N = 1193) and controls (N = 1839) were genotyped for rs1264323 and rs2267641 at DDR1, and the frequencies were compared. We replicated the association between DDR1 and SZ (rs1264323, adjusted P = 0.015). Carriers of the rs1264323AA combined with the rs2267641AC or CC genotype are at risk to develop SZ compared to the other genotype combinations. Second, SZ patients (Study 2, N = 194) underwent an evaluation of PS using the Trail Making Test (TMT) and DDR1 genotyping. To compare PS between DDR1 genotype groups, we conducted an analysis of covariance (including rs1264323 as a covariate) and found that SZ patients with the rs2267641CC genotype had decreased PS compared to patients with the AA and AC genotypes. Third, 54 patients (Study 3) from Study 2 were selected based on rs1264323 genotype to undergo reevaluation, including a DTI-MRI brain scan. To test for associations between PS, WM microstructure and DDR1 genotype, we first localized those WM regions where fractional anisotropy (FA) was correlated with PS and tested whether FA showed differences between the rs1264323 genotypes. SZ patients with the rs1264323AA genotype showed decreased FA in WM regions associated with decreased PS. We conclude that DDR1 variants may confer a risk of SZ through WM microstructural alterations leading to cognitive dysfunction.
Keywords: Cognition; DDR1; Genetics; Imaging; Myelin.
Copyright © 2018. Published by Elsevier Ltd.