Strongly disordered superconductors in a magnetic field display many characteristic properties of type-II superconductivity-except at low temperatures, where an anomalous linear temperature dependence of the resistive critical field B c2 is routinely observed. This behavior violates the conventional theory of superconductivity, and its origin has posed a long-standing puzzle. Here we report systematic measurements of the critical magnetic field and current on amorphous indium oxide films with various levels of disorder. Surprisingly, our measurements show that the B c2 anomaly is accompanied by mean-field-like scaling of the critical current. Based on a comprehensive theoretical study we argue that these observations are a consequence of the vortex-glass ground state and its thermal fluctuations. Our theory further predicts that the linear-temperature anomaly occurs more generally in both films and disordered bulk superconductors, with a slope that depends on the normal-state sheet resistance, which we confirm experimentally.