We present a numerical method for solving electromagnetic scattering by dense discrete random media entitled radiative transfer with reciprocal transactions (R2T2). The R2T2 is a combination of the Monte Carlo radiative-transfer, coherent-backscattering, and superposition T-matrix methods. The applicability of the radiative transfer is extended to dense random media by incorporating incoherent volume elements containing multiple particles. We analyze the R2T2 by comparing the results with the asymptotically exact superposition T-matrix method, and show that the R2T2 removes the caveats of radiative-transfer methods by comparing it to the RT-CB. We study various implementation choices that result in an accurate and efficient numerical algorithm. In particular, we focus on the properties of the incoherent volume elements and their effects on the final solution.