The field of miniature mechanical oscillators is rapidly evolving, with emerging applications including signal processing, biological detection1 and fundamental tests of quantum mechanics2. As the dimensions of a mechanical oscillator shrink to the molecular scale, such as in a carbon nanotube resonator3-7, their vibrations become increasingly coupled and strongly interacting8,9 until even weak thermal fluctuations could make the oscillator nonlinear10-13. The mechanics at this scale possesses rich dynamics, unexplored because an efficient way of detecting the motion in real time is lacking. Here we directly measure the thermal vibrations of a carbon nanotube in real time using a high-finesse micrometre-scale silicon nitride optical cavity as a sensitive photonic microscope. With the high displacement sensitivity of 700 fm Hz-1/2 and the fine time resolution of this technique, we were able to discover a realm of dynamics undetected by previous time-averaged measurements and a room-temperature coherence that is nearly three orders of magnitude longer than previously reported. We find that the discrepancy in the coherence stems from long-time non-equilibrium dynamics, analogous to the Fermi-Pasta-Ulam-Tsingou recurrence seen in nonlinear systems14. Our data unveil the emergence of a weakly chaotic mechanical breather15, in which vibrational energy is recurrently shared among several resonance modes-dynamics that we are able to reproduce using a simple numerical model. These experiments open up the study of nonlinear mechanical systems in the Brownian limit (that is, when a system is driven solely by thermal fluctuations) and present an integrated, sensitive, high-bandwidth nanophotonic interface for carbon nanotube resonators.