Malaria is traditionally diagnosed by blood smear microscopy, which requires continuous resource-demanding training. In areas with only a few cases of malaria, a simple and rapid test that can reliably exclude malaria could significantly reduce the need for microscopy and training. We evaluated whether loop-mediated isothermal amplification (LAMP) for screening malaria parasites could reduce the workload in the diagnosis of malaria. Loop-mediated isothermal amplification was used to analyze 38 ethylene-diamine-tetraacetic acid (EDTA) blood samples from 23 patients who had previously been tested for malaria by microscopy, antigen-based rapid diagnostic test (antigen-RDT), and in-house real-time polymerase chain reaction (RT-PCR). The samples included blood with low-level parasitaemia and samples with discrepancies between the results of the different methods. Loop-mediated isothermal amplification detected malaria parasites in 27 of 28 samples that were positive according to in-house RT-PCR. There were negative microscopy results in 10 of these and negative antigen-RDT results in 11. The sample with a negative LAMP result and positive in-house RT-PCR result was from a patient who had recently been treated for low-level Plasmodium falciparum malaria parasitaemia. We found LAMP to be reliable for malaria screening and suitable for replacing microscopy without loss of performance. The low number of LAMP-positive samples needing microscopy can be handled by a limited number of trained microscopists. The time saved on training and documentation was estimated to be 520 working hours yearly in our laboratory. Using LAMP for primary screening of patient samples, we have made a diagnostic workflow that ensures more reliable, faster, and less resource-demanding diagnosis of malaria.