Objective: In the present investigation, the effect of different cooking processes on L-DOPA level, phenolics contents, in vitro protein (IVPD) and starch digestibility (IVSD), and proximate composition with in vitro anti-inflammatory and antioxidant potential of Mucuna macrocarpa (MM) has been evaluated. Methods: The L-DOPA and major phenolics acids quantification of processed samples were done by a reverse-phase high-performance liquid chromatography (RP-HPLC) technique. Proximate composition, elemental quantification, and in vitro protein and starch digestibility of the samples were carried out by using spectrophotometric analysis. The anti-inflammatory activities of samples were evaluated by a human red blood cells (HRBCs) membrane stabilization test and bovine serum albumin (BSA) anti-denaturation assay. Antioxidant potential of processed beans was carried out by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and N,N-dimethyl-p-phenylendiamine (DMPD) assays and ferric reducing/antioxidant power (FRAP) assay. Results: The processed MM beans showed a significant reduction of L-DOPA (6.30%), phytic acid (25.78%), tannin (19.79%), and saponin (25.59%) in the boiling, autoclaving, and roasting processes. RP-HPLC quantification of major phenolics acids was also affected by the differential process as compare to the raw seed sample. The processed seeds also showed considerable improvement of in vitro protein (26.93%) and starch (20.30%) digestibility, whereas the anti-inflammatory potential and antioxidant potential of MM beans were decreased in the processed samples, indicating a reduction of antioxidant molecules. Conclusion: The differential process showed considerable changes in the proximate composition, in vitro digestibility, and biological potential. The present study recommends the utilization of MM beans after autoclaving and boiling for maximum nutritional potential with health benefits.
Keywords: bean; Antioxidant; L-DOPA; anti-inflammatory; food processing; in vitro digestibility.