Radiotherapy can be synergistically combined with immunotherapy in mouse models, extending its efficacious effects outside of the irradiated field (abscopal effects). We previously reported that a regimen encompassing local radiotherapy in combination with anti-CD137 plus anti-PD-1 mAbs achieves potent abscopal effects against syngeneic transplanted murine tumors up to a certain tumor size. Knowing that TGFβ expression or activation increases in irradiated tissues, we tested whether TGFβ blockade may further enhance abscopal effects in conjunction with the anti-PD-1 plus anti-CD137 mAb combination. Indeed, TGFβ blockade with 1D11, a TGFβ-neutralizing mAb, markedly enhanced abscopal effects and overall treatment efficacy against subcutaneous tumors of either 4T1 breast cancer cells or large MC38 colorectal tumors. Increases in CD8 T cells infiltrating the nonirradiated lesion were documented upon combined treatment, which intensely expressed Granzyme-B as an indicator of cytotoxic effector capability. Interestingly, tumor tissue but not healthy tissue irradiation results in the presence of higher concentrations of TGFβ in the nonirradiated contralateral tumor that showed smad2/3 phosphorylation increases in infiltrating CD8 T cells. In conclusion, radiotherapy-induced TGFβ hampers abscopal efficacy even upon combination with a potent immunotherapy regimen. Therefore, TGFβ blockade in combination with radioimmunotherapy results in greater efficacy.
©2019 American Association for Cancer Research.