The brain represents one of the most divergent and critical organs in the human body. Yet, it can be afflicted by a variety of neurodegenerative diseases specifically linked to aging, about which we lack a full biomolecular understanding of onset and progression, such as Alzheimer's disease (AD). Here we provide a proteomic resource comprising nine anatomically distinct sections from three aged individuals, across a spectrum of disease progression, categorized by quantity of neurofibrillary tangles. Using state-of-the-art mass spectrometry, we identify a core brain proteome that exhibits only small variance in expression, accompanied by a group of proteins that are highly differentially expressed in individual sections and broader regions. AD affected tissue exhibited slightly elevated levels of tau protein with similar relative expression to factors associated with the AD pathology. Substantial differences were identified between previous proteomic studies of mature adult brains and our aged cohort. Our findings suggest considerable value in examining specifically the brain proteome of aged human populations from a multiregional perspective. This resource can serve as a guide, as well as a point of reference for how specific regions of the brain are affected by aging and neurodegeneration.
Keywords: Alzheimer’s disease; aged brain; brain tissue; cortical samples; human proteomics; limbic samples; mass spectrometry; multiregional; neurodegeneration; quantitative proteomics.