Systemic lupus erythematosus (SLE) is an autoimmune and inflammatory disease with periods of exacerbation and remission. SLE is characterized by the irreversible breakdown of immunological self-tolerance, where there is deregulation of multiple aspects of the immune system. SLE immune dysfunction is characterized by activation of autoreactive T lymphocytes, and hyperactivity of B lymphocytes with consequent production of several autoantibodies. ATP is a purinergic mediator released into the extracellular space in response to cell and tissue damage which operates as a danger signal to modulate immune and inflammatory responses. ATP binds to P2 receptors and its levels are regulated by NTPDase (CD39). SLE patients exhibit increased levels of ATP which binds to P2X receptors resulting in activation of the inflammasome and consequent release of IL-1β and IL-18, cytokines associated with disease pathogenesis. CD39 is upregulated in SLE representing an important immunoregulatory mechanism by controlling inflammation and favoring the production of adenosine. The aim of this review is to clarify the effects of ATP on the modulation of the inflammatory process and immune responses via P2 receptors as well as the role of NTPDase in the immunopathogenesis of SLE.
Keywords: ATP; Autoimmune; Inflammation; NTPDase; Systemic lupus erythematosus.
Copyright © 2019 Elsevier GmbH. All rights reserved.