NKAP is a multifunctional nuclear protein that associates with the histone deacetylase HDAC3. Although both NKAP and HDAC3 are critical for hematopoietic stem cell (HSC) maintenance and survival, it was not known whether these two proteins work together. To assess the importance of their association in vivo, serial truncation and alanine scanning was performed on NKAP to identify the minimal binding site for HDAC3. Mutation of either Y352 or F347 to alanine abrogated the association of NKAP with HDAC3, but did not alter NKAP localization or expression. Using a linked conditional deletion/re-expression system in vivo, we demonstrated that re-expression of the Y352A NKAP mutant failed to restore HSC maintenance and survival in mice when endogenous NKAP expression was eliminated using Mx1-cre and poly-IC, whereas re-expression of wild type NKAP maintained the HSC pool. However, Y352A NKAP did restore proliferation in murine embryonic fibroblasts when endogenous NKAP expression was eliminated using ER-cre and tamoxifen. Therefore, Y352 in NKAP is critical for association with HDAC3 and for HSC maintenance and survival but is not important for proliferation of murine embryonic fibroblasts, demonstrating that NKAP functions in different complexes in different cell types.
Copyright © 2019 by The American Association of Immunologists, Inc.