Background: The mechanically expandable Lotus Valve System is a fully repositionable and retrievable valve with an adaptive seal to minimize paravalvular leak (PVL). The aim of this study was to evaluate the short- and long-term safety and efficacy of the new device with focus on a new implantation technique to reduce the need for a permanent pacemaker (PPM) post procedure.
Methods: We performed a prospective single-center, non-randomized evaluation of the Lotus Valve System. The first 100 consecutive Lotus Valve implantations were included in the analysis. Outcome was assessed according to VARC2-criteria. Postoperative pacemaker rates were assessed using the national pacemaker registry and electronic medical records. Mortality at 30 days and 12 months were acquired from the national population registry.
Results: Mean age was 82.7 ± 5.6 years, mean Euroscore I was 25.3 ± 14.5%, mean STS-score was 6.5 ± 4.1% and mean aortic valve area was 0.6 ± 0.1 cm2. There were no cases of valve embolization, ectopic valve deployment or additional valve implantation. Device success according to the VARC2-criteria was 97%. The 30-day mortality rate was 3%. Two deaths occurred due to stroke and one due to a ventricular rupture. Major stroke rate was 2% and major vascular complication rate was 2%. The 12-month mortality rate was 14%. At discharge 87% of patients had no/trace PVL, 12% had mild PVL and one patient had a moderate PVL. A total of 13% received a new PPM post valve implantation. Among patients who did not have a PPM before the procedure, the PPM rate was 15.3%.
Conclusions: This single-center evaluation of the Lotus Valve System demonstrated a good clinical outcome with a low mortality, in a high-risk population. Introduction of a new implantation technique resulted in lower PPM rates than previously reported without negatively affecting PVL.
Trial registration: Current Controlled Trials ISRCTN14952278 , retrospectively registered 06/11/2017.
Keywords: Paravalvular leak; Permanent pacemaker; Transcatheter aortic valve replacement.